Interference of Interchromophoric Energy-Transfer Pathways in π-Conjugated Macrocycles.

نویسندگان

  • Laura Alfonso Hernandez
  • Tammie Nelson
  • Maxim F Gelin
  • John M Lupton
  • Sergei Tretiak
  • Sebastian Fernandez-Alberti
چکیده

The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene-ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unit but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Simulation results are validated by modeling the fluorescence anisotropy decay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design principle for increasing charge mobility of π-conjugated polymers using regularly localized molecular orbitals

The feasibility of using π-conjugated polymers as next-generation electronic materials is extensively studied; however, their charge mobilities are lower than those of inorganic materials. Here we demonstrate a new design principle for increasing the intramolecular charge mobility of π-conjugated polymers by covering the π-conjugated chain with macrocycles and regularly localizing π-molecular o...

متن کامل

Fully conjugated macrocycles composed of thiophenes, acetylenes, and ethylenes*

Fully conjugated π-expanded macrocyclic oligothiophenes with 24π to 180π electron systems have been synthesized using a modified McMurry coupling reaction as the key step. For the synthesis of cyclo[n](2,5-thienylene-ethynylene)s composed of thiophenes and acetylenes, bromination-dehydrobromination and double elimination procedure were employed. X-ray analyses of macrocyclic oligothiophenes wit...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

Investigations of New Low Gap Conjugated Compounds Based on Thiophene-Phenylene as Solar Cells Materials

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The co...

متن کامل

Theoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene

Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 7 23  شماره 

صفحات  -

تاریخ انتشار 2016